目 录

一、概述(1)
1.1 仪器的外形(1)
1.2 主要特点(2)
1.3 主要功能(2)
二、技术指标(3)
三、工作原理······(4)
四、仪器的安装(4)
4.1 配件检查(4)
4.2 仪器的安装(5)
4.3 ORP 电极的安装(6)
4.4 仪器的接线(8)
五、仪器的操作(9)
5.1 显示说明(9)
5.2 按键说明(10)
5.3 功能菜单及设置(11)
1、参数设置(12)
2、仪表日志(14)
3、维护服务(16)
4、输出设置(17)
5、报警设置(19)

	6、工厂设置······	(19)
	7、仪表信息······	(19)
	8、曲线按键的作用与用法	(19)
六、	仪器的校准······	(20)
	6.1 仪器的校准	(20)
	6.2 输出校准 ······	(23)
七、	电极的使用注意事项 · · · · · · · · · · · · · · · · · · ·	(27)
	7.1 电极的选用 ·······	(27)
	7. 2 电极的维护 ·······	(27)
	7.3 注意事项······	(28)
八、	仪器常见故障判别与处理	(30)

一 概 述

ORP 分析仪是我公司生产的一款全新分析仪器。该仪器为智能化在线连续监测仪。分析仪由检测电极和毫伏计组成。传感器采用两复合电极,保证高的测量精度。外壳采用防水设计,可用于工业现场溶液检测(金属表面处理溶液,印刷喷液,盐水,池塘,游泳池,污染控制,再循环系统,废水,工业加工系统等)。带背光的点阵液晶显示更清晰。菜单式操作,简单易用,是测量氧化还原电位的理想仪器。

1.1 仪器的外形

仪器的外形如下图 1.1 所示:

图 1.1

ORP分析仪:由主机、ORP电极组成。测量可靠、数据准确。

1.2 主要特点

高智能化: 该仪器采用高精度 A/D 转换和单片机微处理技术。

高可靠性: 元器件集成到一块线路板上, 没有了复杂的功能开 关、调节旋钮和电位器。

双高阻输入: 采用最新元器件,双高阻输入阻抗高达 $10^{12}\Omega$,抗干扰能力强。

电流隔离输出:采用光电耦合隔离技术,抗干扰能力强,可远传。

防水防尘设计: 防护等级 IP65, 适宜户外使用。

1.3 主要功能

中文显示、中文菜单、中文记事:采用多样化的菜单结构,类似微机的操作方法,操作简单,操作步骤全程中文提示,可不用说明书,按仪器提示即可方便完成。

多参数同屏显示: 在同一屏幕上同时显示 ORP 值、时间和状态等。

监测电极功能:每次标定的方式、时间和结果均有记录,便于 查询、分析电极的变化规律。

数字时钟功能: 提供各种功能的时间基准。

优良的显示方式:采用 128×64 点阵图形式液晶显示屏,实现了图形和文字的显示。可调的均匀背光灯,在户外条件下也能清晰的观察和操作。

二 技术指标

显 示: 128×64 点阵液晶,中文显示;

测量范围: ±2000mV;

电气示值误差: +1mV:

最小分辨率: 0.1 mV;

温补范围: (0~60) ℃

水样温度: (5~60) ℃;

水样压力: <0.6MPa;

环境温度: (5~45) ℃;

环境湿度: ≤90%RH(无冷凝);

储运温度: (-25~55) ℃ (不包括电极,电极要高于0℃);

供电电源: AC(85~265) V 频率(45~65)Hz;

功 率: ≤15W;

外形尺寸: 145mm×120mm×150mm;

开孔尺寸: 138mm×138mm;

仪器重量: 0.64kg;

电流隔离输出: (0~10) mA、 (0~20) mA 和 (4~20) mA 任选;

报警继电器: 2 个常开点任意设定, AC220V 3A/DC30V 3A;

防护等级: IP65;

掉电保存: >10年;

二次表安装方式: 开孔式/壁挂式/架装式:

电极安装方式: 流通式/沉入式/法兰式/管道式(特殊安装方式,

协商设计)。

三 工作原理

仪器采用铂电极直接测定法,主要由测量电极和高阻毫伏计(或 离子计)两部分组成。

原电池由测量电极(指示电极)、参比电极和被测液构成。参比电极的电极电位不随被测溶液浓度的变化而变化。ORP 值是由溶液中电子活动所决定,因为自由电子并不会在溶液中存在,实际上 ORP 可看做是某种物质对电子结合或失去的难易程度。ORP 的测定是电位势能的测量,在电位测量过程中,实际并没有电流通过水溶液。

在 ORP 形成过程中,电子可以从电极流向氧化还原体系,或反向流动。在金属表面电荷的析出导致电位的形成,此电位又抵抗电子进一步迁移。当达到平衡状态时,电化学力(电位)和化学力(氧化力或还原力)相互平衡,这样溶液的 ORP 将随其氧化能力的大小而呈比例增减,所测出的 ORP 值呈典型线性关系。所以原电池的电动势与待测离子的活度有一一对应关系,可见,原电池的作用是把难以直接测量的化学量(离子活度)转换成容易测量的电学量(测量电池的电动势)。

在水中,每一种物质都有它的氧化还原特性,氧化还原电位越高,氧化性越强,电位越低,氧化性越弱。电位为正表示溶液的氧化性,为负则显示还原性。

四 仪器的安装

4.1 配件检查

开箱后,请按装箱单核对仪器的型号、规格及附件数量。

4.2 仪器的安装

4.2.1 开孔式安装

(1) 在安装盘上开 138mm×138mm 安装孔,如下图 4.2.1 所示:

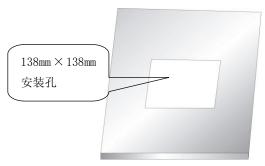


图 4.2.1

(2) 将仪器装入安装孔中,然后用仪器自带的四个紧固支架将仪器卡紧在安装盘上,如下图 4.2.2 所示:

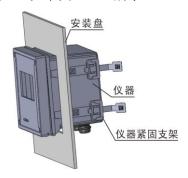


图 4.2.2

4.2.2 壁挂式安装

(1) 仪器安装支架如下图 4.2.3 所示,根据现场情况可水平或垂直安装。

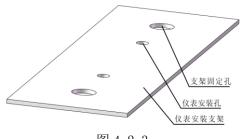


图 4.2.3

(2) 将安装架安装在仪器壳体上, 然后用 M5×14 的螺钉紧固 好,再把安装支架固定到墙面或其它安装物上:如下图 4.2.4 所示

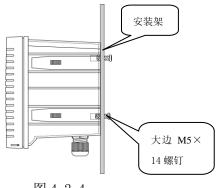


图 4.2.4

4.2.3 架装式安装

通过底座上的 90mm×90mm 四个定位孔,将仪器固定在安装架 上,具体安装方法请参看壁挂式安装。

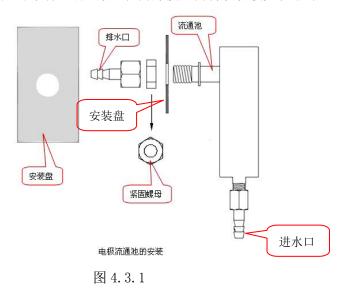
4.3 ORP 电极安装

电极通常有两种安装方式: 沉入式、法兰式。电极一定要竖直 安装, 否则参比液无法渗透。

一、沉入式安装: ORP 电极的引线从不锈钢管里穿出, ORP 电 极顶部的 3/4 螺纹与不锈钢 3/4 螺纹用生料带管相连接,确保电极 顶部及电极线不讲水。

二、法兰式: 先把护套固定, 再通过 0RP 电极 3/4 的螺纹处使用与护套相连接。

三、流通池式:


(1) 流通池的安装

测量池采用流通式结构,适用于软硬管连接的水路(见图4.3.1)。

安装步骤:

在安装盘上开一个直径为 Ø15 的孔,将流通池的出水口的接头 从孔中穿过,在盘的另一端用紧固螺母将流通池紧固,紧固好后, 将软管接头接好;连接进水管和排水管;进水口和排水口接 Ø6 (内 径)软管或焊接 Ø10 (外径)不锈钢管。

注: 出厂时带有不锈钢管, 若需焊接只需将软管接头换下即可。

(2) ORP 电极的安装

ORP 电极顶部的 3/4 螺纹缠绕适量的生料带,然后装入流通池内,旋转电机主体并拧紧,确保电极顶部及电极线不进水,如下图4.3.2 所示:

图 4.3.2

4.4 仪器的接线

用螺丝刀拆掉上盖的螺钉,打开仪器。参考下图接线,线接好后,应让线留有一定的余量(便于下次打开机壳时线不被拉断),再拧紧 PG11 的防水圈。

注意: 电极与仪器的连接电缆不要与电源线近距离平行铺设, 以免对信号产生不良的影响。

仪器接线端子分布如下图 4.4.1; 各脚定义如下表 1 所示:

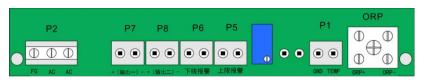


图 4.4.1

表 1

序号	电路板符号	接线说明
ORP	ORP-	ORP 电极(ORP-)
OKP	ORP+	ORP 电极(ORP+)
P1	TEMP	TEMP
	GND	ORP 电极(GND)
P5	上限报警	继电器开关(通、断)
P6	下限报警	继电器开关(通、断)
P7	电流一 -	4mA~20mA 输出
1 1	电流一 +	
P8	电流二 -	4mA~20mA 输出
	电流二 +	ուս Հայու վի յ լել
	AC	220V AC
P2	AC	220V AC
	FG	电源接地端

五 仪器的操作

5.1 显示说明

接通仪器电源后, 打开电源开关, 显示如下图 5.1.1 所示:

欢迎使用 北京时代新维仪器

图 5.1.1

3 秒钟后转入如下界面,如下图 5.1.2 所示:

图 5.1.2

上图 5.1.2 界面下停顿两秒钟后, 主机初始化完成, 自动转入正常测量界面, 如下图 5.1.3 所示:

图 5.1.3

5.2 按键说明

按键共8个,如下图5.2.1所示,分别为:

图 5.2.1

上键:光标向上移动一格/数字模式下,数值加一。

下键:光标向下移动一格/数字模式下,数值减一。

左键: 光标向左移动一格。

右键:光标向右移动一格。

返回:返回上级界面/退出当前操作。

确认:菜单界面下进入所选择的菜单项/保存当前修改。

菜单:进入菜单选项界面。

曲线:测量界面下按曲线键,直接进入曲线查看界面。

5.3 功能菜单及设置

测量界面下, 按菜单键进入主菜单界面, 如下图 5.3.1 所示:

图 5.3.1

注:(1) 主菜单分为7个子菜单:分别为参数设置、仪表日志、维护服务、输出设置、报警设置、工厂设置和仪表信息。

(2) 仪器屏幕只能显示四行,下面的部分可以通过 "▲ ▼" 键移动光标显示出来,如下图 5. 3. 2 所示:

图 5.3.2

1、参数设置

在上图 5.3.1 界面下选中参数设置,按确认键即可进入子菜单,如下图 5.3.3 所示 (ORP 分析仪测量值即为当前值,不带温度参数调节功能):

图 5.3.3

内容介绍

- ▼温度补偿:由于样品温度的波动会对测量造成影响,必须进行温度补偿,可以选择自动或手动温度补偿方式。
- ▼补偿温度: 当温度补偿方式设定为手动时有效,如果温度补偿方式设定为自动,此菜单无效,进入本菜单修改参数无效。

注: 以上两功能对 ORP 分析仪无效, ORP 分析仪测得值即为当前真实值,不需要温度补偿。

(1)温度补偿(对 ORP 分析仪无效)

温度补偿分手动补偿和自动补偿两种方式,如下图 5.3.4 所示:

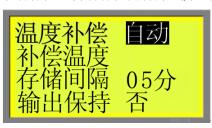


图 5.3.4

(2)补偿温度(对 ORP 分析仪无效)

该功能仅在手动补偿时有效,此方式下可进行温度值的修改,如下图 5.3.5 所示:

图 5.3.5

按"▼"将光标移到补偿温度,按确认键进入修改状态,按"▲▼" 键修改要补偿的温度数值,如下图 5.3.6 所示:

图 5.3.6

(3)存储间隔

存储间隔可在(1~99)间修改,若设定了该项,则仪器按设定间隔自动存储数据。用户可根据自己的实际需要自行设置。

图 5.3.7

(4)输出保持

输出保持可在(是/否)间切换,若将该项设为"是",则输出 电流类型将保持不变。

图 5.3.8

2、仪表日志

测量界面下按菜单键进入主菜单,按"▼"方向键将光标移到 仪表日志选项,按确认键进入仪表日志子菜单,如下图 5.3.9 所示:

图 5.3.9

(1) 运行记录

按确认键即可进入查看界面,如下图 5.3.10 所示:

图 5.3.10

此菜单下保存了对仪器的各项操作,如:开机、关机、校准、亮度调节、修改时间、温度补偿、修改零点和斜率等,可保存 256 条数据,当数据超过 256 条时,只存储最近 256 条的记录。

(2) 校准记录

在图 5.3.10 界面下,按"▼"键将光标移至校准记录,按确认键可查看校准记录,如下图 5.3.11 所示:

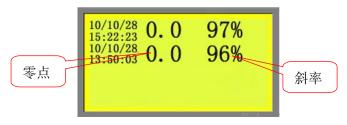


图 5.3.11

(3) 数据记录

按"▼"键将光标移至数据记录,按确认键可查看记录数据,如下图 5.3.12 所示:

10/10/28 15:22:23 10/10/28 13:50:03 2636mV

图 5.3.12

注: 当没有数据记录时显示无记录。

3、维护服务

测量界面下按菜单键进入主菜单,再按"▼"键将光标移至维护服务菜单,按确认键进入维护服务子菜单,如下图 5.3.13 所示;

图 5.3.13

(1) 仪表校准(详见下章节仪器校准)。

(2) 仪表时间

用于设置仪器的时间,可依次设置年、月、日、时、分,设置 完成后按确认键自动返回。如下图 5.3.14 所示:

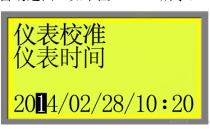


图 5.3.14

4、输出设置

该菜单共有7个子菜单,分别为:电流类型、ORP零点、ORP满度、温度零点、温度满度、电流输出一和电流输出二,(ORP分析仪温度功能无效)如下图5.3.15所示:

图 5.3.15

注: 仪器屏幕只能显示四行,下面的部分可通过 "▲▼"键移动光标显示出来,按确认键进入相应的菜单,按返回键退回到测量界面,如下图 5.3.16 所示:

图 5.3.16

(1) 电流类型

用户可根据电流的输出类型在 $(0\sim10)$ mA、 $(0\sim20)$ mA 和 $(4\sim20)$ mA 间进行切换选择。

(2) ORP 零点和满度

用户可自己定义零点和满度,但要根据实际需要进行设置。

(3) 温度零点和满度(ORP 分析仪温度功能无效)

用户可自己定义零点和满度,但要根据实际需要进行设置。

(4) 电流输出一、二

用户可自己定义电流输出类型,电流输出一、二可在 ORP 和温度间进行切换选择。

5、报警设置

在测量界面下按菜单键即可进入菜单主界面,按"▼"键将光标移到报警设置,该菜单共包含三项,依次为报警选择、上限报警、下限报警。如下图 5.3.17 所示:

图 5.3.17

报警选择:用户根据自己的需要自行选择温度(ORP 分析仪温度功能无效)或 ORP。方法为按确认键,光标自动跳到温度选项,按确认键进入修改状态,按"▲▼"键进行修改,然后按确认键自动退出并保存修改数值。

上、下限报警可根据报警选项的设置,在各自的数值允许范围内进行设定。

图 5.3.18

6、工厂设置

该选项用于厂家维护仪器,用户不用进行设置。

7、仪表信息

仪表信息菜单包含了仪器的出厂信息,本菜单的内容只能阅读不能修改,如下图 5.3.19 所示:

型号: TP160 版本: 2.0 厂商: TIMEPOWER 北京时代新维

图 5.3.19

8、曲线按键的作用及用法

该功能主要用于仪器历史记录的查询;当用户设定了存储间隔时间后,仪器将根据设定自动保存数据,当用户想要查看某天某时的数据记录时,只需按下曲线键即可,具体操作方法如下:

在测量界面下按下曲线键, 仪器进入曲线查询界面, 按"◀▶" 键移动光标可查看某天某时的数据记录, 如下图 5. 3. 20 所示:

注: 仪器最多可存储 3000 条记录, 当数据超过 3000 条时, 只存储最近 3000 条的记录。

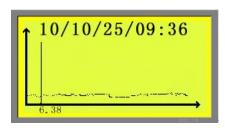


图 5.3.20

六 仪器的校准

- 6.1 仪器的校准
 - 1、标准液校准
 - 1) 准备

ORP 标准试剂 (258mV、95 mV), 100mL 烧杯, 高纯水。

注意: ORP 标准液(试剂)带有毒性,使用时尽量避免直接接触和吸入挥发气体。

2) 4.01pH、6.18pH 标准溶液配制

剪开塑料袋,将粉末倒入 250mL 容量瓶中,以高纯水冲洗塑料袋内壁,并在 25℃稀释到刻度摇匀备用。

- 3) ORP 标准标准溶液配制
 - 《1》95mv 标准溶液(25℃)

将醌氢醌粉末倒入 100mL 中,使用 6.18pH 标准溶液冲洗塑料 袋内壁,倒入烧杯中,然后稀释至 100mL,搅拌均匀,溶解至饱 和(溶液可加热 35-40℃加速溶解饱和)。

《2》256 mv 标准溶液(25℃)

将醌氢醌粉末倒入 100mL 中,使用 4.01pH 标准溶液冲洗塑料袋内壁,倒入烧杯中,然后稀释至 100mL,搅拌均匀,溶解至饱和(溶液可加热 35-40℃加速溶解饱和)。

注: 醌氢醌带有毒性,使用时尽量避免直接接触和吸入挥发

气体: ORP 标准标准溶液密封放置,有效期小于72小时。

2、操作方法

在维护服务菜单里选中仪器校准菜单,此菜单共二项(校准 ORP、校准输出),如下图 6.1.1 所示:

图 6.1.1

按确认键进入 ORP 校准菜单,如下图 6.1.2 所示:

将电极放入标液 一中,然后按确 认键继续!

图 6.1.2

标准一校准

取适量95mv标准溶液冲洗电极,用此方法清洗电极至少冲洗2 遍,然后再倒一杯95mv标准溶液,将电极放入盛放标准溶液的烧杯 中,然后按确认键继续,如下图6.1.3所示: 标液一 86mV 请输入标液一数值 后,按确认键开始 校准!

图 6.1.3

按面膜按键"▲▼"键,修改为95mv,然后按确认键继续,显示如下图6.1.4所示:

标液一 95 mV +95 mV 待数值稳定后按 确认键!

图 6.1.4

正在进行校准,待数值稳定后按确认键,仪器进入下一操作界面,如下图6.1.5所示:

两点校准,请将 电极放入标液二中 然后按确认键继续 否则按退出键退出

图6.1.5

按确认键进入下一界面,如下图 6.1.6 所示:

标液二 258mV 请输入标液二数值 后,按确认键开始 校准!

图 6.1.6

标准缓冲液二校准

取适量258mv标准溶液冲洗电极,用此方法清洗电极至少冲洗2遍,然后再倒一杯258mv标准溶液,将电极放入盛放标准溶液的烧杯中,然后按确认键继续。如果识别的不正确,按"▲▼"键进行修改,然后按确认键继续,如下图6.1.7所示:

标液二 258mV 252mV 待数值稳定后按认 校准结束!

图 6.1.7

待数值稳定后按确认键校准完成。

注:此项有校准判别功能,如果操作有误完成后会提示"校准错误",并且程序不保存错误信息。

2、输出校准

校准输出时,电流类型有($0\sim10$)mA、($0\sim20$)mA 和($4\sim20$)mA 三组可供选择,校准时用户可根据仪器输出范围选其中一组进行校准,不用三组均校,现就($4\sim20$)mA 的校准方法举例说明,如下图 6.3.1 所示:

图 6.3.1

按仪器"菜单"键,进入"维护服务"、"仪表校准"、"校准输出"。按"确认"键进入校准状态。如下图 6.3.2 所示:

图 6.3.2

按 "▼"键,光标移至校准输出,按确认键显示如下图 6.3.3 所示:

图 6.3.3

1、输出一零点、满度校准

按照仪器界面的提示,将万用表打到电流 mA 档,将两表笔与"电

流输出一"接线端子(+、-)端相接触,此时万用表会显示一数值,然后按"▲▼"键修改 0600 直到万用表显示 04.00mA 时为止,然后按确认键进入下一界面。用上一步的方法将电流值调校至 20.00mA,按确认键校准结束。

注: 用同样的方法对仪器电流输出二进行校准。

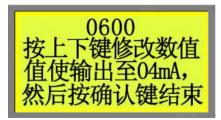


图 6.3.4

用上一步的方法将电流值调至 20mA, 按确认键校准结束, 如下图 6.3.5 所示:

3500 按上下键修改数值 值使输出至20mA, 然后按确认键结束

图 6.3.5

2、输出二零点、满度校准

按照输出一零点、满度校准的校准方法,具体操作如下:

0600 按上下键修改数值 值使输出至04mA, 然后按确认键结束

图 6.3.6

按照上图 6.2.17 仪器界面的提示,将万用表打到电流档,将两表笔与接线"电流输出二"端子(mA2+ -) 相接触,此时万用表会显示一数值,然后按"▲▼"键修改 0600 直到万用表显示 04mA时为止,然后按确认键进入下一步,如下图 6.3.7 所示:

3500 按上下键修改数值 值使输出至20mA, 然后按确认键结束

图 6.3.7

用上一步的方法将电流值调至 20mA, 按确认键校准结束。

反测

进入参数设置,将量程转换改为自动,然后返回测量界面,仪器提供 $(0\sim10)$ mA、 $(0\sim20)$ mA 和 $(4\sim20)$ mA 三档电流输出信号对应的 mV 值可由用户自行设定,测量的 mV 值与输出的电流的对应关系如下:

对 0~10mA 输出方式: I={(D-DL)/(DH-DL)}×10mA 对 0~20mA 输出方式: I={(D-DL)/(DH-DL)}×20mA 对 4~20mA 输出方式: I=4mA+{ (D-DL) / (DH-DL) }×16mA 其中: I——输出的电流值; D——当前测得的 mV 值;

DH——用户设定的 20mA 或 10mA 电流输出所对应的 mV 值,即输出上限;

DL——用户设定的 4mA 或 0mA 电流输出所对应的 mV 值,即输出下限。

七 电极的使用注意事项

7.1 电极的选用

电极的准确度和稳定性,是决定 ORP 分析仪精度的关键因素之一。

ORP 电极使用时无需标定,直接使用即可,只有对 ORP 电极的 品质或测试结果有疑问时,可用 25℃时 256mV 的 ORP 标准溶液检查 电位是否在 241-271mv 之间,以判断 ORP 电极或仪器好坏。

不要把 ORP 电极直接投入水中,应使用电极安装支架(自制),也可以直接拧到管道上。

安装前必须使用生料带(3/4 螺纹处)做好防水密封工作,避免水进入 ORP 或 ORP 电极中,造成电极电缆短路。

7.2 电极的维护

ORP 分析仪使用性能的好坏,很大程度上取决于电极的维护。 应经常清洗电极,确保其不受污染或堵塞;每隔一段时间要标定电 极;在停水期间,应确保电极浸泡在被测液中,否则会缩短其寿命; 必须保持电缆连接头清洁,不能受潮或进水。若仪器确实出了问题, 请不要自行修理,请与我们联系。 **清洗:** 电极应定时清洗,若电极玻璃球泡形成液接界污染可用下列试剂清洗。

- a. 表面活性剂清洗
- b. 硫化物沉淀可用 10%的稀盐酸清洗
- c. 钙淀化物或金属氢氧化物可用 10%的稀盐酸清洗
- d. 蛋白质附着物可用 10%的稀盐酸胃蛋白酶的混合物清洗

活化: ORP 测量电极,其表面应该是光亮的,粗糙的或受污染表面会影响电极的电位,可用以下方法清洗活化。

- (1) 对无机物污染,可将电极浸入 0.1mol/L 稀盐酸中 30 分钟, 用纯水清洗,在浸入 3.3mol/L 氯化钾溶液中浸泡 6 小时后使用。
- (2) 铂金表面污染严重形成氧化膜,可用牙膏对铂或金表面进行抛光,然后用纯水清洗,再浸入 3.3mo1/L 氯化钾溶液中浸泡 6 小时后使用
- (3) 对有机油污和油膜污染,可用洗涤剂清洗铂或金表面后用 纯水清洗,再浸入3.3mol/L氯化钾溶液中浸泡6小时后使用
- (4) 若暂停使用电极,应仪表断电,取出 ORP 电极,使用高纯水彻底清洗电极前端,将保护盖腔内注入 3.3mo1/L 氯化钾溶液至内螺纹处,然后安装至电极前端,将溢出氯化钾溶液擦拭干净。装入包装盒保存。

7.3 注意事项

7.3.1 校准注意事项

- 1. 标准缓冲溶液温度尽量与被测溶液温度接近。
- 2. 执行校准工作电极标定时,应注意电极不能平放,要垂直放入标准液中

- 3. 定位标准缓冲溶液应尽量接近被测溶液的 ORP 值。或两点标 定时,应尽量使被测溶液的 ORP 值在两个标准缓冲溶液的区间内。
- 4. 校准后,应将浸入标准缓冲溶液的电极用水特别冲洗,因为缓冲溶液的缓冲作用,带入被测溶液后,造成测量误差。

7.3.2 ORP 分析仪测量注意事项

目前使用的复合电极主要有全封闭型和非封闭型两种,全封闭型比较少,主要是以国外企业生产为主。

复合电极使用前首先检查玻璃球泡是否有裂痕、破碎,如果没有,用 ORP 标准溶液进行两点标定时,定位与斜率按钮均可调节到对应的 ORP 值时,一般认为可以使用,否则可按使用说明书进行电极活化处理。

非封闭型复合电极,里面要加外参比溶液即 3.3mo1/L 氯化钾溶液,所以必须检查电极里的氯化钾溶液是否在 1/3 以上,如果不到,需添加 3.3mo1/L 氯化钾溶液。如果氯化钾溶液超出小孔位置,则把多余的氯化钾溶液甩掉,使溶液位于小孔下面,并检查溶液中是否有气泡,如有气泡要轻弹电极,把气泡完全赶出。

在使用过程中应把电极上面的橡皮剥下,使小孔露在外面,否则在进行分析时,会产生负压,导致氯化钾溶液不能顺利通过玻璃球泡与被测溶液进行离子交换,会使测量数据不准确。

电极从测量管线拆下后应把橡皮复原,封住小孔。电极经蒸馏水清洗后,应浸泡在3.3mo1/L氯化钾溶液中,以保持电极球泡的湿润,如果电极使用前发现保护液已流失,则应在3.3mo1/L氯化钾溶液中浸泡数小时,以使电极达到最好的测量状态。

复合电极不可放在蒸馏水中长时间浸泡,这是不正确的,这会使复合电极内的氯化钾溶液浓度大大降低,导致在测量时电极反应不灵敏,最终导致测量数据不准确,因此不应把复合电极长时间浸泡在蒸馏水中。

八 仪器常见故障判别与处理

故障现象	故障判别	排除方法
1. 仪器开机无显示	1)电源未接通	1) 检查电源线是否接通
2. 数字显示不稳定	1) 仪器预热时间短 2) 外部电压不稳定 3) 仪器接地不良	 1)增加仪器预热时间 2)改善仪器工作环境 3)改善仪器接地状态
3. 仪器测量值偏大或偏小	 电极受污染 流通池受污染 电气漂移 	1) 用高纯水冲洗仪器电极 2) 清洗仪器流通池 3) 对仪器做曲线校准
4. 响应变慢,读数 不稳定	 1)玻璃球泡污染 2)液接面堵塞 3)玻璃球内有气泡 	1) 用无水乙醇擦洗电极接头 2) 清洗电极 3) 轻甩电极,将气泡甩去